(4 intermediate revisions by the same user not shown)
Line 215: Line 215:
*The method described in this paper may be adaptable for estimating the profile of the produced power for underwater cells.(it is intended for comparison between sunny and cloudy days).
*The method described in this paper may be adaptable for estimating the profile of the produced power for underwater cells.(it is intended for comparison between sunny and cloudy days).


===Implementation-of-a-photovoltaic-floating-cover-for-irrigation-reservoirs_2014_Journal-of-Cleaner-Production===
===[https://www.researchgate.net/publication/274027719_Implementation_of_a_photovoltaic_floating_cover_for_irrigation_reservoirs Implementation-of-a-photovoltaic-floating-cover-for-irrigation-reservoirs_2014_Journal-of-Cleaner-Production <ref name=> Santafé, M.R., Ferrer Gisbert, P.S., Sánchez Romero, F.J., Torregrosa Soler, J.B., Ferrán Gozálvez, J.J., Ferrer Gisbert, C.M., 2014. Implementation of a photovoltaic floating cover for irrigation reservoirs. Journal of Cleaner Production 66, 568–570. doi:10.1016/j.jclepro.2013.11.006</ref>]===
 
Santafé, M.R., Ferrer Gisbert, P.S., Sánchez Romero, F.J., Torregrosa Soler, J.B., Ferrán Gozálvez, J.J., Ferrer Gisbert, C.M., 2014. "[https://www.researchgate.net/publication/274027719_Implementation_of_a_photovoltaic_floating_cover_for_irrigation_reservoirs Implementation of a photovoltaic floating cover for irrigation reservoirs]" Journal of Cleaner Production 66, 568–570. doi:10.1016/j.jclepro.2013.11.006


Abstract:  
Abstract:  
Line 229: Line 227:
*Useful paper for proof of concept
*Useful paper for proof of concept


===Theoretical-and-experimental-analysis-of-a-floating-photovoltaic-cover-for-water-irrigation-reservoirs_2014_Energy===
===[https://www.researchgate.net/publication/260211944_Theoretical_and_experimental_analysis_of_a_floating_photovoltaic_cover_for_water_irrigation_reservoirs Theoretical-and-experimental-analysis-of-a-floating-photovoltaic-cover-for-water-irrigation-reservoirs_2014_Energy <ref name=> Redón Santafé, M., Torregrosa Soler, J.B., Sánchez Romero, F.J., Ferrer Gisbert, P.S., Ferrán Gozálvez, J.J., Ferrer Gisbert, C.M., 2014. Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs Energy 67, 246–255. doi:10.1016/j.energy.2014.01.083</ref>]===
 
Source (request text): Redón Santafé, M., Torregrosa Soler, J.B., Sánchez Romero, F.J., Ferrer Gisbert, P.S., Ferrán Gozálvez, J.J., Ferrer Gisbert, C.M., 2014. "[https://www.researchgate.net/publication/260211944_Theoretical_and_experimental_analysis_of_a_floating_photovoltaic_cover_for_water_irrigation_reservoirs Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs]" Energy 67, 246–255. doi:10.1016/j.energy.2014.01.083


Abstract:
Abstract:
Line 245: Line 241:
*useful paper for detailed proof of concept and compelling data.
*useful paper for detailed proof of concept and compelling data.


===The Feasibility of a Municipally Operated Electric Grid in Santa Fe, New Mexico===
===[https://www.wpi.edu/Pubs/E-project/Available/E-project-080910-112655/unrestricted/D10_Santa_Fe_Electrical_Final_Report.pdf The Feasibility of a Municipally Operated Electric Grid in Santa Fe, New Mexico <ref name=> Altman, J., Harner, A., Leung, H.F. and Tecce, S., 2010. The Feasibility of a Municipally Operated Electric Grid in Santa Fe, New Mexico.</ref>]===
 
[https://www.wpi.edu/Pubs/E-project/Available/E-project-080910-112655/unrestricted/D10_Santa_Fe_Electrical_Final_Report.pdf The Feasibility of a Municipally Operated Electric Grid in Santa Fe, New Mexico]
 
Abstract:


Santa Fe, NM adopted the Sustainable Santa Fe Plan in 2008 to provide environmentallyconscious
Santa Fe, NM adopted the Sustainable Santa Fe Plan in 2008 to provide environmentallyconscious
Line 268: Line 260:
*This isnt terribly useful for this lit review, but it is good to see floatovoltaics being seen as an option to move cities towards sustainability
*This isnt terribly useful for this lit review, but it is good to see floatovoltaics being seen as an option to move cities towards sustainability


===Floating photovoltaic arrays to power the mining industry: A case study for the McFaulds lake (Ring of Fire)===
===[http://onlinelibrary.wiley.com/doi/10.1002/ep.12275/abstract Floating photovoltaic arrays to power the mining industry: A case study for the McFaulds lake (Ring of Fire) <ref name=> Trapani, K., Millar, D.L., 2015. Floating photovoltaic arrays to power the mining industry: A case study for the McFaulds lake (Ring of Fire) Environ. Prog. Sustainable Energy n/a–n/a. doi:10.1002/ep.12275</ref>]===
 
Source: Trapani, K., Millar, D.L., 2015. "[http://onlinelibrary.wiley.com/doi/10.1002/ep.12275/abstract Floating photovoltaic arrays to power the mining industry: A case study for the McFaulds lake (Ring of Fire)}" Environ. Prog. Sustainable Energy n/a–n/a. doi:10.1002/ep.12275


Abstract:
Abstract:

Revision as of 15:44, 9 February 2016

Introduction

For background information on Aquaculture.

For background information on Photovoltaics.

PVs integrated into a Aquaculture system - Similar to what we intend

Snapshot so far:

  • Huge for sustainability - local and global effects
  • PVs are good for energy generation
  • PVs over water allow for more flexible use, as well as providing space in land precious locations.
  • Aquaculture can result in a net positive impact on the environment/ecosystems.
  • Aquaculture - fastest growing food source.
  • Combining provides both food and electricity anywhere there is at least a pond.

Companies in the buisiness

Goals

  1. Understand water-based Photovoltaics
  2. Understand aquaculture needs and effects PVs could have
  3. Create an aquaculture calculator
  4. Design 3D printable HDPE OS floating proof of concept
  5. Summarize findings in paper

Helpful Info

  • Short-circuit current (Isc)
  • Maximum power current (Imp)
  • Open-circuit voltage (Voc)
  • Maximum power voltage (Vmp)
  • Maximum power Pmp = Imp*Vmp,
  • Global panel efficiency (η).

Concepts/thoughts in progress

Sketches pending

  • Floatovoltaics can be built: aqueducts, ponds, reservoirs, lakes, dam-created lakes - coastal areas, aquaculture farms
  • Typically fish grow better when longer photoperiods are experienced. Although quality and intensity of light would need to be adjusted per species a constant light could be used to promote fish growth.
  • This light could be generated on the underside of a floating PV module. In this set up, both the PV would be benefited(through increased cooling) and fish through longer day-length(artificially done).
  • A floating PV design may(in some designs) be anchored for structural safety, this may also provide a building block for a developing aquaculture ecosystem(in coastal areas - coral reefs) - mimic fish nursery
  • Literature suggests a full ecosystem is beneficial for reducing pollution and potentially using waste products as other inputs for various animals(plants algae). This would also increase the stability of the ecosystem and lead to higher quality fish growth.
  • The main loads acting on a PV and module system are dead loads, PV panels, maintenance live loads, wind pressure and buoyancy forces. Thus a system must be built to withstand. Unless the system is of flexible solar design with no stiff structure.
  • Rotating a field around a body of water would mitigate affects. Pumps could be used to increase O2 mixing to increase biomass.
  • Need greater understanding of fishes - pelegic, demersal, reef, and others.

Online searches

PV focus

  • aquaculture photovoltaic
  • Floatovoltaics
  • Development of Floating Photovoltaic System

Aquaculture focus

  • Effect of Darkness on growing fish
  • Marine renewable energy
  • Biofouling on submerged structures

Feasibility of design

  • calculator to be added
  • Terrestrial system less $ than Floatovolatic system
    • increase in power from cooling
    • value of water saved from evaporation/cleaning
    • unknown effect on the ecosystem underneath.(should be able to be tweaked to be +)

Literature Review - PVs on water

Photovoltaic Applications in Aquaculture: The Fish Site

Full Text: "Photovoltaic Applications in Aquaculture: A Primer" | Publication Summary | ATTRA | National Sustainable Agriculture Information Service

  • Article(secondary source) indicates a aquaculture system currently using PVs.
  • Provides list of needed solar equipment for a given aquaculture system(Tank, closed,open, raceway, pond)
  • Good article to read for a general overview - recommended

A review of floating photovoltaic installations: 2007–2013" [1]

Abstract:

The paper gives a review of the various projects that have been realised in throughout the years. These have all been in enclosed water bodies such as reservoirs, ponds and small lakes. The main motivation for the floating photovoltaic (PV) panels was the land premium, especially for agricultural sites were the land was more valuable for growth of the crops (in these cases, grapes because the sites were wineries). The PV panels of the existing projects are mounted on a rigid pontoon structure and vary between horizontal and tilted installations. Future concepts proposed for marine and large lacusterine sites are envisaged to incorporate laminated thin film PV, which would allow the structure to be flexible and able to yield with the oncoming waves, and submergible arrays, which would be submerged in harsh weather conditions. Interest and research has been developing in this niche field throughout the years and has currently reached the megawatt scale with even bigger plans for the future.

  • Review is helpful for various floating photovoltaic installations
  • States benefits of dual use such as reduction in water evaporation and cooling of PV - up to a 20% increase in electricity output(need to confirm)
  • To date most systems have been constructed on ponds, reservoirs or smaller lakes.
  • Detailed list with pictures of prominent projects done globally 2007-13
  • Main objective so far: use water for energy generation where land was valuable in other ways. Such as a vineyard
  • Materials used to support rigid PV- foam PS board, hollow PE cubes, MDPE, metal pins
  • alternatives to rigid structure:
    • flexible thin film structure can ride the waves rather than endure them.
    • submersible PV array
    • panels on a foam surface arrayed so they flow with waves.
  • direction from this paper is to optimize design and build larger systems for rougher environments
    • I think this is a solid start to the search.

Assessment of the renewable energy-mix and land use trade-off at a regional level: A case study for the Kujawsko–Pomorskie Voivodship [2]

Source:

Abstract:

Renewable energy sources (RES) can undoubtedly contribute to protecting the environment and conserving fossil fuels, as well as enhancing regional and rural development opportunities. However, every energy production process affects the environment and involves the use of land resources. The risks linked to intensified RES use should be adequately taken into consideration in any planning process, as ill-conceived energy policies may adversely impact land and local ecosystems, and lead to increases in public spending. Therefore, before designing any instruments for the regulation of both RES and land-use, the most essential step is to explore investment possibilities in different contexts. This paper intends to locate and quantify the potentials of biomass, wind and solar as well as to explore some of the potential planning issues associated with their development. The methods and findings presented in this paper may help to build a vision for the development of an optimal RES portfolio and to highlight emerging problems associated with RES deployment.

  • Renewable energy sources described take up land. Land - which may be used for farming/biocrops/wind. (Land use demand increases)
  • PV systems have only a small negative impact on ecosystems.
  • PVs need flat land (ideally unsuited to agriculture) as inclined increases costs - forests or other land types make PV adaption more difficult

Environmental impacts from the installation and operation of large-scale solar power plants[3]

Abstract:

Large-scale solar power plants are being developed at a rapid rate, and are setting up to use thousands or millions of acres of land globally. The environmental issues related to the installation and operation phases of such facilities have not, so far, been addressed comprehensively in the literature. Here we identify and appraise 32 impacts from these phases, under the themes of land use intensity, human health and well-being, plant and animal life, geohydrological resources, and climate change. Our appraisals assume that electricity generated by new solar power facilities will displace electricity from traditional U.S. generation technologies. Altogether we find 22 of the considered 32 impacts to be beneficial. Of the remaining 10 impacts, 4 are neutral, and 6 require further research before they can be appraised. None of the impacts are negative relative to traditional power generation. We rank the impacts in terms of priority, and find all the high-priority impacts to be beneficial. In quantitative terms, large-scale solar power plants occupy the same or less land per kW h than coal power plant life cycles. Removal of forests to make space for solar power causes CO2 emissions as high as 36 g CO2 kW h−1, which is a significant contribution to the life cycle CO2 emissions of solar power, but is still low compared to CO2 emissions from coal-based electricity that are about 1100 g CO2 kW h−1.

  • Discusses land use intensity and impact on land area per electric energy generated for energy sources
  • Discusses impact to human health, wildlife/habitat, land use, CO2, and climate change Table 1-5.
  • This paper is useful for making an argument for using solar over other forms of energy generation. It does not discuss auqavoltaics.
  • Impacts discussed: 22 beneficial, 4 neutral, 0 detrimental, 6 need more research

Novel offshore application of photovoltaics in comparison to conventional marine renewable energy technologies [4]

Abstract:

An original proposal for the deployment of photovoltaic (PV) systems in offshore environments is presented in this paper. Crystalline PV panels are considered where they are deployed on pontoon type structures and there are six case study examples precedent practise of such deployments in lakes and reservoirs (but not seas). The authors put forward an alternative based on flexible thin film PV that floats directly on the waterline. The paper then concentrates on the techno-economic appraisal of offshore PV systems in comparison to conventional marine renewable energy technologies. The difficulties of comparing offshore technology projects developed in various countries, using different currencies and in different years are overcome so that such comparisons are made on an equitable basis. The discounted cost of electricity generated by each scheme is determined, including capital expenditure (CAPEX) and yearly operation and maintenance (O&M) costs.

Actual wind, tidal (current turbines and barrages) and wave projects were considered in the analysis alongside crystalline and thin film PV. Thin film PV was found to be economically competitive with offshore wind energy projects for latitudes ranging from 45°N to 45°S. The specific yield, assessed in terms of GWh/km2 was higher for thin film PV than for wind, wave and tidal barrage systems. In addition the specific installed capacity, expressed in MW/km2 was also higher than the other conventional technologies considered (excluding tidal current turbines).

  • Idea to adapt established offshore renewable energy technologies to provide structure for PVs
  • In-depth analysis of current offshore PV technology - 2012
  • idea of flexible cells vs pontoon structure
  • Cost analysis and case studies completed so far(tables 2&3)
  • Thin film tech is probably the way to go
    • low cost, self cleaning, higher efficiencies, less vessel collision potential
    • Thin film has potential to be more economic than wind for offshore

A new photovoltaic floating cover system for water reservoirs [5]

Abstract:

This paper describes a new photovoltaic floating cover system for water reservoirs developed jointly by the company CELEMIN ENERGY and the Universidad Politécnica de Valencia. The system consists of polyethylene floating modules which, with the use of tension producing elements and elastic fasteners, are able to adapt to varying reservoir water levels.

A full-scale plant located near Alicante (Spain) was built in an agriculture reservoir to study the behaviour of the system. The top of the reservoir has a surface area of 4700 m2 but only 7% of such area has been covered with the fixed solar system.

The system also minimizes evaporation losses from water reservoirs.

  • Various design methods to reduce water evaporation - 80% (covers/modules) + other general benefits
  • Geometric design of PV modules needs to be flexible so that it can match the internal geometry of water reservoirs
  • Tilt angles are effected by wind uplift and drifting - consideration for design
  • Fully detailed design of their PV flotation structure.
  • FEM and CAD were used for designing
  • Detailed economic viability also discussed. (their model is 30% more expensive than a land unit) - viable due to water savings and efficient land use. (not needing to change agricultural lands)
  • A versatile design is essential as water systems conform to the landscape and are variable in geometry.

Environmental impacts from the solar energy technologies [6]

Abstract:

Solar energy systems (photovoltaics, solar thermal, solar power) provide significant environmental benefits in comparison to the conventional energy sources, thus contributing, to the sustainable development of human activities. Sometimes however, their wide scale deployment has to face potential negative environmental implications. These potential problems seem to be a strong barrier for a further dissemination of these systems in some consumers.

To cope with these problems this paper presents an overview of an Environmental Impact Assessment. We assess the potential environmental intrusions in order to ameliorate them with new technological innovations and good practices in the future power systems. The analysis provides the potential burdens to the environment, which include—during the construction, the installation and the demolition phases, as well as especially in the case of the central solar technologies—noise and visual intrusion, greenhouse gas emissions, water and soil pollution, energy consumption, labour accidents, impact on archaeological sites or on sensitive ecosystems, negative and positive socio-economic effects.

  • Absence of air emissions or waste products
  • Capability of use in off grid systems
  • Multi-purpose capability - water, space heating, cooling
  • Standard paper going through benefits of solar compared to non-renewable energy sources - useful for reference

Environmental impacts of utility-scale solar energy[7]

Source:

Abstract:

Renewable energy is a promising alternative to fossil fuel-based energy, but its development can require a complex set of environmental tradeoffs. A recent increase in solar energy systems, especially large, centralized installations, underscores the urgency of understanding their environmental interactions. Synthesizing literature across numerous disciplines, we review direct and indirect environmental impacts – both beneficial and adverse – of utility-scale solar energy (USSE) development, including impacts on biodiversity, land-use and land-cover change, soils, water resources, and human health. Additionally, we review feedbacks between USSE infrastructure and land-atmosphere interactions and the potential for USSE systems to mitigate climate change. Several characteristics and development strategies of USSE systems have low environmental impacts relative to other energy systems, including other renewables. We show opportunities to increase USSE environmental co-benefits, the permitting and regulatory constraints and opportunities of USSE, and highlight future research directions to better understand the nexus between USSE and the environment. Increasing the environmental compatibility of USSE systems will maximize the efficacy of this key renewable energy source in mitigating climatic and global environmental change

  • Solar dwarfs the potential of other renewable energy techs by several orders of magnitude.(wind and biomass)
  • Fig 2 details effects on environments(land)
  • water primarily used to clean panels of dust(lowers efficiency). Dust generation can increase based on land use change
  • Fig 4 has global map of temperature impact on solar energy potential.
  • Section 4.4 deals with Floatovoltaics - reduces need for land transformation and conserves water.
  • Good review article for utility scale solar. Will be useful to show benefits of moving to water implementation over land PVs

A-review-on-global-solar-energy-policy_2011_Renewable-and-Sustainable-Energy-Reviews [8]

Abstract:

To overcome the negative impacts on the environment and other problems associated with fossil fuels have forced many countries to inquire into and change to environmental friendly alternatives that are renewable to sustain the increasing energy demand. Solar energy is one of the best renewable energy sources with least negative impacts on the environment. Different countries have formulated solar energy policies to reducing dependence on fossil fuel and increasing domestic energy production by solar energy. This paper discusses a review about the different solar energy policies implemented on the different countries of the world. According to the 2010 BP Statistical Energy Survey, the world cumulative installed solar energy capacity was 22928.9 MW in 2009, a change of 46.9% compared to 2008. Also this paper discussed the existing successful solar energy policies of few selected countries. Based on literatures, it has been found that FIT, RPS and incentives are the most beneficial energy policies implemented by many countries around the world. These policies provide significant motivation and interest for the development and use of renewable energy technologies. Also the status of solar energy policy for Malaysia is investigated and compared with that of the successful countries in the world

  • Section 2.1.1. is USA solar energy policy
  • Paper says many good things about solar compared to other energy sources
  • Not particularly useful for this review

Artificial neural network based model for estimating the produced power of a photovoltaic module 2013 Renewable Energy [9]

Abstract:

In this paper, a methodology to estimate the profile of the produced power of a 50 Wp Si-polycrystalline photovoltaic (PV) module is described. For this purpose, two artificial neural networks (ANNs) have been developed for use in cloudy and sunny days respectively. More than one year of measured data (solar irradiance, air temperature, PV module voltage and PV module current) have been recorded at the Marmara University, Istanbul, Turkey (from 1-1-2011 to 24-2-2012) and used for the training and validation of the models. Results confirm the ability of the developed ANN-models for estimating the power produced with reasonable accuracy. A comparative study shows that the ANN-models perform better than polynomial regression, multiple linear regression, analytical and one-diode models. The advantage of the ANN-models is that they do not need more parameters or complicate calculations unlike implicit models. The developed models could be used to forecast the profile of the produced power. Although, the methodology has been applied for one polycrystalline PV module, it could also be generalized for large scale photovoltaic plants as well as for other PV technologies.

  • The method described in this paper may be adaptable for estimating the profile of the produced power for underwater cells.(it is intended for comparison between sunny and cloudy days).

Implementation-of-a-photovoltaic-floating-cover-for-irrigation-reservoirs_2014_Journal-of-Cleaner-Production [10]

Abstract:

The article presents the main features of a floating photovoltaic cover system (FPCS) for water irrigation reservoirs whose purpose is to reduce the evaporation of water while generating electrical power. The system consists of polyethylene floating modules which are able to adapt to varying reservoir water levels by means of tension bars and elastic fasteners.

  • Figure 1 - graphic of system implemented
  • System discussed in paper was proven to be technically feasible and economically viable
  • Evaporation rate was reduced due to solar array
  • Useful paper for proof of concept

Theoretical-and-experimental-analysis-of-a-floating-photovoltaic-cover-for-water-irrigation-reservoirs_2014_Energy [11]

Abstract:

The article presents the main design features and photovoltaic requirements of a FPCS (floating photovoltaic cover system) for water irrigation reservoirs whose purpose is to reduce the evaporation of water while generating electrical power. Also, a summary of installation costs and relationship with the yield performance is deeply analyzed. A prototype of 20 kWp was implemented, and given the success of the results observed, the whole surface reservoir was covered (4490 m2 and 300 kWp). The paper analyses the first electricity productions of the system and from these data the CO2 balance of the facility is calculated.

  • Figure 1 - covered vs uncovered reservoir system.
  • Geometry of solar array and reservoir are important for consideration during design process - modular is imperative
  • Paper details their dimensions and materials used in construction of pontoon structure
  • Economic assessment is detailed
  • Annual saving or 5000 m^3 water saved
  • useful paper for detailed proof of concept and compelling data.

The Feasibility of a Municipally Operated Electric Grid in Santa Fe, New Mexico [12]

Santa Fe, NM adopted the Sustainable Santa Fe Plan in 2008 to provide environmentallyconscious considerations to local policies which would help Santa Fe be resilient to climate change and rising energy costs, but Santa Fe has no control over one of the biggest contributors to greenhouse gases: energy production. The lack of control over energy production and policy has led to interest in the acquisition of the electrical infrastructure from Public Service Utility of New Mexico (PNM) in order to create a municipally owned utility which could incorporate renewable energy. This study assesses the value of the existing electrical infrastructure in Santa Fe to provide some preliminary information for its purchase. The replacement cost of the infrastructure was estimated to be $100 million, an amount the city could afford with a slight rate increase.

  • Various energy sources are discussed.
  • section 2.4.7 deals with Floatovoltaics
  • This report uses a pontoon structure over bodies of water.
  • 215 acres of floatovoltaics (30MW) in reservoirs would offset enough coal usage to meet the goal
  • This isnt terribly useful for this lit review, but it is good to see floatovoltaics being seen as an option to move cities towards sustainability

Floating photovoltaic arrays to power the mining industry: A case study for the McFaulds lake (Ring of Fire) [13]

Abstract:

The article looks at the integration of crystalline and thin film (a-Si) floating photovoltaic (PV) arrays for electricity generation in remote mine sites. Floating PV arrays rather than regular ground mounted PV arrays are considered more suitable for the site because it decreases the environmental impacts—in terms of not requiring landscaping or deforestation. The research provides a techno-economic analysis for the integration of varying levels of PV with 40 MW of diesel generation. The main challenge was the consideration of the gen sets part load together with the variability of the solar resource at the site. Applications of alternative technologies at remote mine sites are fairly limited. Results show that at a diesel fuel cost greater than $129c/L a-Si floating PV would offer some financial benefits. At this price, this is not applicable to floating crystalline PV arrays because the infrastructure required to keep them floating would offset the cost savings from the PV array. Further savings could be achieved if energy storage or load shedding could be implemented at the mine, or extra revenue could be generated through carbon credits. Solar energy for remote mine sites is not a solution to 100% of its electricity demands, unless an energy storage is available, so diesel generation is still a requirement. © 2015 American Institute of Chemical Engineers Environ Prog, 2015

  • Waiting on interlibrary loan 1/22

FLEXIBLE FLOATING THIN FILM PHOTOVOLTAIC (PV) ARRAY CONCEPT FOR MARINE AND LACUSTRINE ENVIRONMENTS

Trapani, K., 2014. FLEXIBLE FLOATING THIN FILM PHOTOVOLTAIC (PV) ARRAY CONCEPT FOR MARINE AND LACUSTRINE ENVIRONMENTS (Thesis). Laurentian University of Sudbury.

  • Antifouling/Self-cleaning coatings
  • Existing PV/floating concepts
  • Hydrodynamics of large scale floating PV arrays
  • Electrical yeild modelling of thin film solar arrays
  • Characterization of submerged laminated a-Si thin film
  • Thin film flexible PV array development
  • Techno-Economic analysis of prototype array and other techs
  • Several implemented examples(remote mine, isolated island community)
  • Basically everything about thin film PVs in water was her Thesis.
  • Massively helpful paper(her sources and research are quite holistic for Floatovoltaics)

Floatovoltaics: Quantifying the Benefits of a Hydro-Solar Power Fusion

Full source and Text: McKay, A., 2013. "Floatovoltaics: Quantifying the Benefits of a Hydro-Solar Power Fusion" Pomona Senior Theses.

  • 
Floatovoltaics have:
    • wide 
open 
spaces and 
no
 shading
 issues
    • Water is flat
, so
 there 
are
 no
 grading 
issues
    • No 
alternative 
use
 issues, and low environmental 
impact
    • On a reservoir: save 
on 
transmission 
infrastructure 
costs.
  • pg 14 has info on US water coverage/NREL estimates
  • pg 16-19 Temperature cooling equations for panels in water
  • Ecological discussion on page 31 - recommended for future study
  • 8-10%increase in power production, 70% water savings from reduced evaporation. Powerful when paired with hydroelectic power plants. Great promise.

Review of hydroelasticity theories for global response of marine structures

Abstract:

Existing hydroelastic theories are reviewed. The theories are classified into different types: two dimensional linear theory, two-dimensional nonlinear theory, three-dimensional linear theory and three-dimensional nonlinear theory. Applications to analysis of very large floating structures (VLFS) are reviewed and discussed in details. Special emphasis is placed on papers from China and Japan (in native languages) as these papers are not generally publicly known in the rest of the world.

Chen, X., Wu, Y., Cui, W., Jensen, J.J., 2006. Review of hydroelasticity theories for global response of marine structures. Ocean Engineering 33, 439–457. doi:10.1016/j.oceaneng.2004.04.010

  • investigates motion and distortion of deformable bodies responding to environmental excitations in the sea
  • Three theories are discussed. Useful for designing aspects of floating structures
  • Useful for reference

A study on development of ICT convergence technology for tracking-type floating photovoltaic systems

Lee, A.K., Shin, G.W., Hong, S.T. and Choi, Y.K., 2014. A study on development of ICT convergence technology for tracking-type floating photovoltaic systems. International Journal of Smart Grid and Clean Energy, 3(1), pp.80-87.

Abstract:

This thesis seeks to establish the foundation for tracking-type floating PV system using ICT fusion technology through acquisition of data regarding solar power generated, amount of insolation and solar tracking sensor and real time monitoring of the system. Prior to implementation in the field, Zigbee based sensor node and coordinator of 2.45GHz bandwidth has been produced and tested by transmitting data received from sensor to coordinator and allowing monitoring not only in operation management PC, but also through mobile devices. In the process, wireless communication coordinator and middleware for information collection have been designed and tracking controller was developed. This thesis also pursues formation of low-cost, high-efficiency USN framework through analysis of signal conditions and speed of transmission.

  • Logic path for developing a long range wireless mass network to monitor data
  • Allows data monitoring through PC and mobile devices
  • Meant to track location data of floating photovoltaics
  • Useful article for construction of PV's and electical/computer aspect.

A study on major design elements of tracking-type floating photovoltaic systems

Abstract:

A floating PV system results from the combination of photovoltaic power plant technology and floating technology. K-Water has installed a 100 kW floating PV system on the water surface on Hapcheon dam reservoir in October 2011 and has been operating it since then. After successfully installing the 100 kW floating PV system, K-Water additionally installed a 500 kW floating PV system on another location nearby in July 2012. The electricity generated by the two floating PV systems installed in Hapcheon dam reservoir is creating profits by being sold to the national power grid. In this article, taking a step further from such fixed-type floating PV, the basic concept of 100 kW tracking-type floating PV and the application plan for the tracking algorithm and the rotation mechanism of structure which is a major design element were explained. As the first case that can maximize the power generation efficiency of PV internationally, it is expected that this study will be utilized as a primary guide for future development of tracking type PV system.

Choi, Y.K., Lee, N.H., Lee, A.K. and Kim, K.J., 2014. A study on major design elements of tracking-type floating photovoltaic systems. International Journal of Smart Grid and Clean Energy, 3(1), pp.70-74.

  • Tracking types can generate 20% improvement than non-tracking types
  • Comparison of fixed vs tracking types of PVs (Table 1)
  • Paper incorperates design specifications of tracking type PVs. (azimuth and altitude of the sun)
  • Higher efficiency, but more costly, and more moving parts(higher maintenance)

A Study on Power Generation Analysis of Floating PV System Considering Environmental Impact

Choi, Y.K., 2014. A study on power generation analysis of floating PV system considering environmental impact. development, 8(1).

Abstract:

The floating photovoltaic system is a new concept in energy technology to meet the needs of our time. The system integrates existing land based photovoltaic technology with a newly developed floating photovoltaic technology. Because module temperature of floating PV system is lower than that of overland PV system, the floating PV system has 11% better generation efficiency than overland PV system. In the thesis, superiority of floating PV system is verified through comparison analysis of generation amount by 2.4kW, 100kW and 500kW floating PV system installed by K-water and the cause of such superiority was analyzed. Also, effect of wind speed, and waves on floating PV system structure was measured to analyze the effect of the environment on floating PV system generation efficiency.

  • Compares energy generation with 33degree tilt of solar cells. (lower temp leads to 11% increase for on water panels)
  • Details effect of wind/waves on drift of array
  • Good paper for reference of this research lit review.

Stochastic hydroelastic analysis of pontoon-type very large floating structures considering directional wave spectrum

Papaioannou, I., Gao, R., Rank, E. and Wang, C.M., 2013. Stochastic hydroelastic analysis of pontoon-type very large floating structures considering directional wave spectrum. Probabilistic Engineering Mechanics, 33, pp.26-37.

Abstract:

The hydroelastic response of pontoon-type very large floating structures (VLFS) is obtained by resolving the interaction between the surface waves and the floating elastic body. We carry out the analysis in the frequency domain, assuming that the surface waves can be described by a directional wave spectrum. The response spectra can then be computed by application of stationary random vibration analysis. Applying the modal expansion method, we obtain a discrete representation of the required transfer matrices for a finite number of frequencies, while the influence of the wave direction is obtained by numerical integration of the directional components of the spectrum. Moreover, assuming a Gaussian input, we can apply well known approximations to obtain the distribution of extremes. The method is applied to an example VLFS and the effect of different mean wave angles on the stochastic response is investigated.

  • Figure 1 and following equations
  • Section 4 depicts a numerical example
  • Figures 4-10 demonstrate wave analysis
  • Powerful paper for modeling large structures(useful for design of an array)

PVs below water

Performance of Photovoltaic Cells in Undersea Environment

Full Text: Stachiw, J.D., 1980. "Performance of Photovoltaic Cells in Undersea Environment" Journal of Engineering for Industry 102, 51. doi:10.1115/1.3183829

  • intended application is power source for oceanographic buoys.
  • Powerful review and overview article about PVs and how they are affected by being underwater
  • Above ocean surface: water spray, defecation of birds and dense fog decrease performance
  • Under ocean surface: withstand hydrostaic pressure, biofouling, electrical connectors must remain dry
    • encased in silicon-rubber to isolate from water to prevent corrosion
  • <60degree of light to normal incidence of water surface is ideal - after that massive light reflection (fig 5)
  • outside 450-550nm range of light is lost after 25m of depth. (Secchi disc used for visibility testing)
  • Max depth of visibility results in about 5% of surface efficiency of cell. (up to 100ft tested)


  • To combat biofouling this project would ideally incorporate an ecosystem to remove it(fish which feed from it?)
  • Paper concludes that solar cells perform successfully - PCE varies with clarity of water (dependent on type of water/location/season)
  • recommended read

Submerged photovoltaic solar panel: SP2

Source: Rosa-Clot, M., Rosa-Clot, P., Tina, G.M., Scandura, P.F., 2010. "[ http://www.sciencedirect.com/science/article/pii/S0960148109004492# Submerged photovoltaic solar panel: SP2]" Renewable Energy 35, 1862–1865. doi:10.1016/j.renene.2009.10.023

Abstract:

The behavior of a photovoltaic (PV) panel submerged in water is studied. A sizeable increase of electric power output is found for shallow water. Experiments have been carried out for single crystalline silicon panels. Results are discussed and the increase in efficiency is investigated and understood. Operating problems are analyzed and the advantages of using underwater solar panels are pointed out.

  • Benefits of PVs in water: removal of thermal drift and lowering light reflection
  • clean water is a strong light absorber, mainly in red-infrared region
  • Figure 5 is worth looking at. panel above water: 12.3% 4cm below water: 14.05% 40cm below water: 9.25% effiency
  • land panel was on average 70C in temp, panels in water were below 30C throughout the day. almost no variation below water
  • This paper is useful for indicating that there is in fact an efficiency gain when the PV is submerged slightly in water.

Improving The Efficiency Of Polycrystalline Solar Panel Via Water Immersion Method

Sayran A. Abdulgafar, Omar S. Omar, Kamil M. Yousif, 2014. Improving The Efficiency Of Polycrystalline Solar Panel Via Water Immersion Method 3.

Abstract:

Cooling of the solar cells is a critical issue, especially when designing concentrating photovoltaic (PV) systems. In the present work, the cooling of a photovoltaic panel via Water immersion technique is investigated. The aim of this project is to optimize the efficiency of a solar panel by submerged it in distillated water at different depths. Experiment is done for polycrystalline silicon panel. An evident increase of efficiency is found with increasing the water depth. Results are discussed; thermal drift has been reduced and the solar panel efficiency has increased by about 11% at water depth 6 cm.

  • Causes: Reduction of light reflection (lower refraction index), Absence of thermal drift
  • Methodology full described
  • Figures 3-5 are useful vs depths of water used.
  • Useful for design of pontoon structures. Recommended for referencing.

PERFORMANCE OF A SOLAR PANEL WITH WATER IMMERSION COOLING TECHNIQUE

Saurabh Mehrotra, Pratish Rawat, Mary Debbarma, K. Sudhakar, 2014. PERFORMANCE OF A SOLAR PANEL WITH WATER IMMERSION COOLING TECHNIQUE 3, 1161 – 1172.

Abstract:

With the increase in surface temperature of solar cells or panels their efficiency decreases quite dramatically. To overcome the heating of solar cell surface, water immersion cooling technique can be used i.e. it can be submerged in water so as to maintain its surface temperature and provide better efficiency at extreme temperatures. In this study, electrical parameters of solar cell were calculated which showed that the cooling factor plays an important role in the electrical efficiency enhancement. Solar cell immersed in water was monitored under real climatic conditions, cell surface temperature can be controlled from 31- 39 .C. Electrical performance of cell increases up to great extent. Results are dicussed; panel efficiency has increased about 17.8% at water depth 1cm. The study can give support to the Concentrated Photovolatics System by submerging the solar cells in different mediums.

  • Detailed construction, methodology and equations used.
  • Variaton of electrical properties with water depth/time of day (Figures 2-6)
  • Substrate markup for large body of water integration
  • 17.8% increase in electrical efficiency observed
  • Ideal depth of 1cm determined for polycrystalline silicon panel
  • Useful for comparison of ideal depth to be used.

Literature Review - Aquafarms

Farming Fish for the Future

Summary by author Full text: Will Farmed Fish Feed the World

  • Focus of aquaculture towards full ecosystems(ex. oysters to filter water so sunlight penetrates further)
  • if done correctly fish farming can have a net possitive impact on environment (ex. framework for coral reefs)
  • Potential for on land fishfarming(warehouse idea of indoor controlled farming)
  • promotes research in breeding fish
  • Fastest growing food industry
  • Potentially healthier than wild fish(metal/chemical contamination)
  • Very good source for overview of aquaculture and its current/future impact on global/local levels.


Management by life cycle of wolffish, Anarhichas lupus L., a new species for cold-water aquaculture. A technical paper

Moksness, E., Pavlov, D.A., 1996. "Management by life cycle of wolffish, Anarhichas lupus L., a new species for cold-water aquaculture: a technical paper" Aquaculture Research 27, 865–883. doi:10.1046/j.1365-2109.1996.00810.x

Abstract:

Interest in the cultivation of wolffish arose in recent years due to their high-quality meat and fast growth in captivity. In wolffish, an almost juvenile organism, more than 20 mm long, hatches from the egg and can be fed dry pellets just after that. This makes the technology for wolffish breeding much simpler than for other marine fishes, even salmonids. This paper is devoted to common wolffish. Anarhichas lupus L., as the captive breeding of this species has been studied most completely. Experience with broodstock management, insemination, incubation of eggs, start feeding, and growth of rearing juveniles until maturation is described, based mainly on investigations made in Norway and in the Russian Federation. The conditions for obtaining maximum production in the shortest time are assessed. Prospects for using wolffish in aquaculture are briefly discussed.

  • Proof of concept paper that the entire life cycle of the wolffish can be reproduced.
  • Wolffish is ideal for cold environment aquacultures
  • Synergistic with a mussel plantation (food for them, also can be used to control macro-biofouling)
  • High growth rates potential - model for development
  • Useful proof of concept paper with various aspects described about a fish species

Integrating Seaweeds into Marine Aquaculture Systems: A Key Toward Sustainability

Source and full text: Chopin, T., Buschmann, A.H., Halling, C., Troell, M., Kautsky, N., Neori, A., Kraemer, G.P., Zertuche-González, J.A., Yarish, C., Neefus, C., 2001. "Integrating Seaweeds into Marine Aquaculture Systems: A Key Toward Sustainability" Journal of Phycology 37, 975–986. doi:10.1046/j.1529-8817.2001.01137.x

  • Monospecific practices can lead to problems -> diversification leads to wastes of a resource become a resource for another source.
  • Seaweeds can be used in a balanced ecosystem
  • Lots of info on integrated aquaculture(old practice in asia)
  • detailed review of land and open-water based systems.
  • Notable paper for optimizing aquaculture


The importance of selective breeding in aquaculture to meet future demands for animal protein: A review

Source: Gjedrem, T., Robinson, N., Rye, M., 2012. "The importance of selective breeding in aquaculture to meet future demands for animal protein: A review" Aquaculture 350–353, 117–129. doi:10.1016/j.aquaculture.2012.04.008

Abstract:

Aquaculture is the fastest growing food production industry, and the vast majority of aquaculture products are derived from Asia. The quantity of aquaculture products directly consumed is now greater than that resulting from conventional fisheries. The nutritional value of aquatic products compares favourably with meat from farm animals because they are rich in micronutrients and contain high levels of healthy omega-3 fatty acids. Compared with farm animals, fish are more efficient converters of energy and protein. If the aquaculture sector continues to expand at its current rate, production will reach 132 million tonnes of fish and shellfish and 43 million tonnes of seaweed in 2020. Future potential for marine aquaculture production can be estimated based on the length of coastline, and for freshwater aquaculture from available land area in different countries. The average marine production in 2005 was 103 tonnes per km coastline, varying from 0 to 1721 (China). Freshwater aquaculture production in 2005 averaged 0.17 tonnes/ha, varying from 0 to close to 6 tonnes per ha (Bangladesh), also indicating potential to dramatically increase freshwater aquaculture output. Simple estimations indicate potential for a 20-fold increase in world aquaculture production. Limits imposed by the availability of feed resources would be lessened by growing more herbivorous species and by using more of genetically improved stocks.

  • Discusses potential of aquaculture production (section 5)
  • Details production of aquaculture per continent/country
  • Current breeding programs - table 12-13
  • Breeding provides improved quality, economy and efficiency in resource allocation
  • Aquaculture's future is more reliant on future demand/market than technological development
  • Useful paper for arguing in favor of aquaculture's relevance in the food production industry

Effect of aquaculture on world fish supplies

Source and full text: Naylor, R.L., Goldburg, R.J., Primavera, J.H., Kautsky, N., Beveridge, M.C.M., Clay, J., Folke, C., Lubchenco, J., Mooney, H., Troell, M., 2000. "Effect of aquaculture on world fish supplies" Nature 405, 1017–1024. doi:10.1038/35016500

Abstract:

Global production of farmed fish and shellfish has more than doubled in the past 15 years. Many people believe that such growth relieves pressure on ocean fisheries, but the opposite is true for some types of aquaculture. Farming carnivorous species requires large inputs of wild fish for feed. Some aquaculture systems also reduce wild fish supplies through habitat modification, wild seedstock collection and other ecological impacts. On balance, global aquaculture production still adds to world fish supplies; however, if the growing aquaculture industry is to sustain its contribution to world fish supplies, it must reduce wild fish inputs in feed and adopt more ecologically sound management practices.

  • Over-fishing can be made up by farming in sustainable ways
  • Ecological links between aquaculture and wild fish stocks (pg 1020) Some bad characteristics
  • Aquaculture can be sustainable -> polyculture systems
  • Balanced view on pros and cons of aquaculture as it is currently with direction to improve the industry sustainably.

Culture of Cold-Water Marine Fish

(Source may have been removed)Full book: "Culture of Cold-Water Marine Fish" - Erlend Moksness, E. Kjorsvik, Y. Olsen

  • Useful for us on light effects. (section 2.7) - Growth and development
  • Very detailed source for anything aquaculture - very long book
  • Recommended to be referenced

Lighting: How It Affects Freshwater Fish

Source: "Lighting: How It Affects Freshwater Fish"

  • Reasonable sources - Secondary source
  • Gives insight into direct effects day light has on fish. Reactions/response of fish
  • Semi-useful article for quick general understanding, geared towards tanks not aquaculture, but topics should translate.

Does light have an influence on fish growth?

Boeuf, G., Le Bail, P.-Y., 1999. "Does light have an influence on fish growth?" Aquaculture 177, 129–152. doi:10.1016/S0044-8486(99)00074-5

Abstract:

Light compares a complex of external and ecological factors, including colour spectrum, intensity and photoperiod. Light characteristics are very specific in an aquatic environment and light is extremely variable in nature. `Receptivity' of fish to light profoundly changes according to the species and the developmental status. Specific photoreceptor cells are present in both eye and pineal. If it is easy to change the light in experimentation and to observe the effects on fish growth, it is much more difficult in nature to make such determinations. In larvae, many studies have been dedicated to the influence of intensity and photoperiod on growth: generally, species need a minimal threshold intensity to be able to develop normally and grow. This is probably related to the aptitude to localize, catch and ingest prey. Light is also indispensable for body pigmentation, an important phenomenon involved in early development and growth. Too intense light can be stressful or even lethal. A few species are able to develop and grow at very low intensities or, sometimes, in the absence of light. Generally, long daylength improves larval rearing quality. The synergistic effect of `food availability-daylength' appears to be determining at this stage. In older fish, there is very little information about the influence of light `quality' but more about intensity and much more about photoperiod. Light intensity effects are not so clear and depend on the species and the experimental procedures: it is probably not an important factor for growth stimulation. Daylength appears much more important. Many species, including both marine species and salmonids, react to photoperiod treatments and long daylength stimulates growth. The most studied species is the Atlantic salmon, which is very sensitive, both during the freshwater stage, with the parr–smolt transformation very dependent on the photoperiod, and also in sea water. In this last condition, lighting also influences early maturation. An important point is to be certain that light affects fish growth through a better food conversion efficiency and not just through stimulated food intake. Also included in this review is a discussion about the endolymph–otolith system, which is very sensitive to daylight and seasonal cycles and a review of the present knowledge on the involvement of light influence on hormone levels (melatonin, somatotropin, thyroid hormones and other hormones).

  • Highly dependent on species of fish
  • Fish are more affected by day-length than intensity of light
  • Some fish thrive in lower light such as European sea bass(low pigmentation in larvae form)
  • Fish typically have a 24-h cycle(feed in day) inactivity increases at night(passive displacement)
  • Paper goes into detail on specific light intensity levels for several species for optimal growth. (table 1)
  • Very important paper for light effects. Several sections are a must read to gauge effects PVs may have on fish(blocking light)

Marine Plankton Algae Grown with Light-Dark Cycles. I. Coccolithus huxleyi

Source (request text): Paasche, E., 1967. "Marine Plankton Algae Grown with Light-Dark Cycles" I. Coccolithus huxleyi. Physiologia Plantarum 20, 946–956. doi:10.1111/j.1399-3054.1967.tb08382.x

Abstract:

A description is given of an apparatus for semi-continuous cultivation of unicellular algae under various combinations of light intensity, temperature and daylength (photoperiod). In this apparatus growth of the coccolithophorid Coccolithus huxleyi was limited by light intensities below 0.05 cal/cm2 min regardless of daylength. Growth was retarded by daylengths shorter than 16 hours out of a total of 24 hours of light plus dark. The temperature optimum for growth was about 20 C and showed little variation with daylength. The content of chlorophyll a varied between 2 and 15 mg per ml cell volume and was greatest under low light intensities, short daylengths and high temperatures. Cultures were synchronised by four different combinations of light intensity and daylength. In all four cases, cell division was restricted to 6 out of 24 hours. Synchronised cell division took place in the dark but its timing bore no simple relationship to the onset or termination of illumination.

  • requested from researchgate 1/24

Effect of diet and light regime on growth and survival of African catfish (Clarias gariepinus) larvae and early juveniles

Appelbaum, S., McGeer, J.C., 1998. "Effect of diet and light regime on growth and survival of African catfish (Clarias gariepinus) larvae and early juveniles" Aquaculture Nutrition 4, 157–164. doi:10.1046/j.1365-2095.1998.00064.x

Abstract:

Growth of larval sharptooth catfish Clarias gariepinus fed live Artemia nauplii, a specially prepared dry feed (MN-3), a commercial dry salmon starter feed (Silver Cup 3600), or a combination of 50% live Artemia and 50% MN-3, under conditions of either light or dark for 21 days was studied. For all diets, fish reared in darkened tanks were significantly larger than those in illuminated tanks from day 8 onwards. Fish fed a combination of live Artemia plus MN-3 grew significantly more quickly than those fed either live Artemia or MN-3 only. On day 21 of the experiment, average weight of fish fed the combined diet was 649 ± 30 mg (mean ±sem) in darkened tanks and 445 ± 16 mg in illuminated tanks, while those fed Artemia alone were 242 ± 9 and 198 ± 13 mg (dark and light, respectively) and fish fed MN-3 only were intermediate at 377 ± 20 and 267 ± 16 mg (dark and light, respectively). Catfish fed the salmon starter initially grew slowly, but after day 11 grew more quickly than the other groups. Mortalities were highest for fish fed salmon feed.

Permanent darkness enhances the growth of C. gariepinus larvae during and after metamorphosis. While dry diets promoted higher growth rate than live Artemia nauplii alone, a combination of the two resulted in the fastest growth.

  • requested from researchgate 1/24

Adoption of Aquaculture Technology by Fish Farmers in Imo State of Nigeria

Source and full text: Ike, N., Roseline, O., 2007. "Adoption of Aquaculture Technology by Fish Farmers in Imo State of Nigeria" Journal of Technology Studies 33, 57–63.

Abstract:

This paper evaluated the level of adoption of aquaculture technology extended to farmers in Imo State, Nigeria. To improve aquaculture practice in Nigeria, a technology package was developed and disseminated to farmers in the state. This package included ten practices that the farmers were supposed to adopt. Eighty– two respondents were randomly selected from the three zones of the state. Data were collected through structured interview schedule. The results showed that the level of adoption of the technology was low. Less than half of the respondents adopted the technology. After the construction of the ponds, which were usually not to specification, the farmers found it difficult to adopt the other recommendations, (e.g., pond maintenance, feeding, harvesting, and fish preservation). It was discovered that the farmers did not have adequate funds to maintain their small ponds and to purchase the necessary feed and other necessities for aquaculture. To increase the level of adoption of aquaculture technologies in Nigeria, it is necessary to change its perception from subsistence to commercial and sustainable farming practice; to assist the farmers with credit facilities and to provide closer monitoring of the process by extension agents.

  • Paper goes into detail on expanding the use of aquaculture to farmers
  • Details the struggles of implementing new technology/adoption rate -> low
  • Main reason of low adoption was poor economy, farms were not of sufficient size or sustainability to provide enough immediate income.
  • rethink implementation method in such environments(to people)
  • Paper is useful for understanding a process for spreading the aquaculture tech. for sustainability.

Aquaculture Production and Biodiversity Conservation

Source and full text: Diana, J.S., 2009. "Aquaculture Production and Biodiversity Conservation" BioScience 59, 27–38. doi:10.1525/bio.2009.59.1.7

Abstract:

This overview examines the status and trends of seafood production, and the positive and negative impacts of aquaculture on biodiversity conservation. Capture fisheries have been stabilized at about 90 million metric tons since the late 1980s, whereas aquaculture increased from 12 million metric tons in 1985 to 45 million metric tons by 2004. Aquaculture includes species at any trophic level that are grown for domestic consumption or export. Aquaculture has some positive impacts on biodiversity; for example, cultured seafood can reduce pressure on overexploited wild stocks, stocked organisms may enhance depleted stocks, aquaculture often boosts natural production and species diversity, and employment in aquaculture may replace more destructive resource uses. On the negative side, species that escape from aquaculture can become invasive in areas where they are nonnative, effluents from aquaculture can cause eutrophication, ecologically sensitive land may be converted for aquaculture use, aquaculture species may consume increasingly scarce fish meal, and aquaculture species may transmit diseases to wild fish. Most likely, aquaculture will continue to grow at significant rates through 2025, and will remain the most rapidly increasing food production system.

  • Details historical trends (table 1)
  • Aquaculture has the potential to save high risk species from extinction
  • Various positive and negative impacts are discussed
  • Good paper for stating effects of aquaculture as well as realistic future outlook

Fish aggregation device (FAD) research: Gaps in current knowledge and future directions for ecological studies. Reviews in Fish Biology and Fisheries [14]

Abstract:

We reviewed the literature concerning fish aggregation devices (FADs) to determine areas of relative research deficiency. Using specific searches of the Aquatic Sciences and Fisheries Abstracts (ASFA) database from 1978 to December 2003 and a classical search of the pre-1978 literature, we collected 407 references on FADs. Publications before 1980 were predominantly peer-reviewed, although non-peer reviewed literature has dominated since 1980, due to the numerous technical reports produced as FADs became more widely used in artisinal and large-scale industrial fisheries in the 1980s. Most studies of the ecology of FAD-associated fish were descriptive, with few mensurative experimental studies and even fewer manipulative experimental studies that tested specific hypotheses, due to inherent difficulties in working in the open ocean on objects that are temporary in space and time. Research on the ecology of FAD-associated fish has focused on moored FADs, despite the major FAD-based fisheries being around drifting FADs. Publications presenting information on moored FADs outnumbered papers on drifting FADs by a ratio of 3.5:1. We recommend that greater emphasis be placed by fisheries scientists and funding agencies on researching drifting FADs to provide better information for management of large-scale FAD-based industrial fisheries. Future research should focus on determining the patterns of use of drifting FADs by pelagic species, the underlying sensory processes of attraction and the ecological consequences for individual fish stocks and the wider pelagic ecosystem of the use of FADs as fisheries enhancement tools.

  • Association with floating structures is displayed by fish of almost all ontogenetic stages

Stress and welfare of culture fish

Conte, F.., 2004. Stress and the welfare of cultured fish. Applied Animal Behaviour Science 86, 205–223. doi:10.1016/j.applanim.2004.02.003

Abstract:

Cultured species of aquatic animals span more than five phyla. Animal welfare attention is directed towards the vertebrates because of the their neural complexity, and is currently focused on the finfish because of the size and visibility of that segment of the aquaculture industry. The characteristics of the aquatic environment and their impact on the animal have forced growers to develop cultural practices designed to control and minimize animal stress. This was not done as a result of social awareness, but out of necessity to keep fish alive and healthy; and managing stress is a principal key in ensuring animal welfare. Aquatic farmers are aware of the consequences of fish stress, but have limited knowledge of the basic biological principles of animal stress and have little exposure to the linkages between these concepts and the issues critical to animal welfare. Although the industry has many tools available for monitoring and preventing stress, not all growers have had exposure to the information that is available or know of its value when addressing issues of animal welfare.

  • Text requested through researchgate 1/29

Current issues in fish welfare

Huntingford, F.A., Adams, C., Braithwaite, V.A., Kadri, S., Pottinger, T.G., Sandoe, P., Turnbull, J.F., 2006. Current issues in fish welfare. Journal of Fish Biology 68, 332–372. doi:10.1111/j.0022-1112.2006.001046.x

Abstract:

Human beings may affect the welfare of fish through fisheries, aquaculture and a number ofother activities. There is no agreement on just how to weigh the concern for welfare of fishagainst the human interests involved, but ethical frameworks exist that suggest how this mightbe approached.

Different definitions of animal welfare focus on an animal’s condition, on its subjectiveexperience of that condition and/or on whether it can lead a natural life. These providedifferent, legitimate, perspectives, but the approach taken in this paper is to focus on welfareas the absence of suffering.

  • Mental capabilities of fish are unknown - responses to stimuli
  • In-depth analysis of actions humans take which can disrupt lives of fish
  • Not a particularly useful paper for this lit review.

Fish welfare: Current issues in aquaculture

Ashley, P.J., 2007. Fish welfare: Current issues in aquaculture. Applied Animal Behaviour Science, Fish Behaviour and Welfare 104, 199–235. doi:10.1016/j.applanim.2006.09.001

Abstract:

With the continued growth of the aquaculture industry and increasing scientific discussion over the potential for negative events to give rise to suffering, research into the welfare of cultured fish is vital. How we define and measure welfare is cause for debate, particularly in fish. However, research into the effects of aquaculture procedures on welfare is crucial to produce data and recommendations for best practice and future legislation. Both behavioural and physiological measures of welfare are necessary for correct interpretation and while there is a wealth of knowledge on the physiological consequences of many aquaculture practices it is now equally important for us to understand the behavioural responses to these practices and to relate them to fish welfare. Here I review the scientific data that allows us to interpret the effects of disease, handling, transport, food deprivation, and slaughter technique on fish welfare. The effects of stocking density, also an area of welfare concern, are complex and appear to comprise of numerous interacting and case specific factors. Investigation into the relative importance of these factors, particularly through behavioural studies, will serve to improve welfare. Stocking density, diet, feeding technique, and management procedures all have strong effects on stress responses, subsequent stress tolerance, health, and the occurrence of aggressive behaviour. Strategies to reduce disease susceptibility, minimise stress responses, and avoid aggression are, therefore, vital. However, caution should be taken when interpreting “abnormal” fish behaviour and further research is required to allow us to establish the importance of the expression of “natural” behaviours. Collectively this growing area of research serves to improve our knowledge of the impacts of aquaculture and intensive farming procedures on fish welfare and is the first step in improving welfare wherever possible.

  • Requested Via interlibrary Loan 2/1

Marine Biofouling on Fish Farms and Its Remediation

Braithwaite, R.A., McEvoy, L.A., 2004. Marine Biofouling on Fish Farms and Its Remediation, in: Biology, B.-A. in M. (Ed.), . Academic Press, pp. 215–252.

Abstract The fish farming industry suffers significantly from the effects of biofouling. The fouling of cages and netting, which is costly to remove, is detrimental to fish health and yield and can cause equipment failure. With rapid expansion of the aquaculture industry, coupled with the tightening of legislation on the use of antifouling biocides, the problems of fish farm biofouling are increasing. The nature of the biological communities that develop on fish farm equipment and the antifouling practices that can be employed to reduce it are described here. Particular emphasis is placed on antifouling legislature and the future needs of the industry.

The biological communities that develop on fish cages and netting are distinctive, in comparison to those that foul ships. Temperate species of particular importance, because of their cosmopolitan distribution and opportunistic nature, include the blue mussel Mytilus edulis and the ascidian Ciona intestinalis. Antifouling practices include predominantly the use of copper-based antifoulant coatings, in combination with practical fish husbandry and site management practices. The antifouling solutions presently available are not ideal, and it is widely accepted that there is an urgent need for research into combatant technologies. Such alternatives include the adoption of “foul-release” technologies and “biological control” through the use of polyculture systems. However, none of these have, as yet, been proven satisfactory. In view of current legislative trends and the possible future “phasing out” of available antifouling materials, there is a need to find alternative strategies.

  • Requested Via researchgate 2/1

The impact and control of biofouling in marine aquaculture: a review.

Fitridge, I., Dempster, T., Guenther, J., de Nys, R., 2012. The impact and control of biofouling in marine aquaculture: a review. Biofouling 28, 649–669. doi:10.1080/08927014.2012.700478

Abstract:

Biofouling in marine aquaculture is a specific problem where both the target culture species and/or infrastructure are exposed to a diverse array of fouling organisms, with significant production impacts. In shellfish aquaculture the key impact is the direct fouling of stock causing physical damage, mechanical interference, biological competition and environmental modification, while infrastructure is also impacted. In contrast, the key impact in finfish aquaculture is the fouling of infrastructure which restricts water exchange, increases disease risk and causes deformation of cages and structures. Consequently, the economic costs associated with biofouling control are substantial. Conservative estimates are consistently between 5-10% of production costs (equivalent to US$ 1.5 to 3 billion yr(-1)), illustrating the need for effective mitigation methods and technologies. The control of biofouling in aquaculture is achieved through the avoidance of natural recruitment, physical removal and the use of antifoulants. However, the continued rise and expansion of the aquaculture industry and the increasingly stringent legislation for biocides in food production necessitates the development of innovative antifouling strategies. These must meet environmental, societal, and economic benchmarks while effectively preventing the settlement and growth of resilient multi-species consortia of biofouling organisms.

  • Table 1 - common fouling organisms
  • Impact of several species is dicussed
  • Many methods use heavy metals or chemicals which harm the environment
  • Six criteria are explored for future anti-biofouling strategies
  • non-toxic methods are explored
  • Helpful, but there is just not that much novel literature on the topic of anti-biofouling for aquaculture

Environmental Effects of Shellfish Aquaculture in the Northeast

Rice, M.A., others, 2008. Environmental effects of shellfish aquaculture in the Northeast. NRAC Publication Fact Sheet 105, 1–6.

Abstract:

One of the great impediments to further development of shellfish aquaculture in the Northeast Region is a perception that industry expansion could have negative environmental effects on our coastal waters. Although considerable research over the last 25 years has focused on both the positive and negative effects of rebuilding mollusc populations, which could filter enormous quantities of algae, such studies are sometimes classed as environmental “impacts,” which has a connotation of aesthetic loss and a perceived “loss of nature.” The purpose of this fact sheet is to discuss the potential environmental effects of expanding shellfish aquaculture and social issues surrounding such expansion and to provide key scientific resources.

  • Filter feeding can increase water purity - cycle minerals - buffer
  • Diseases are discussed
  • Shellfish farming more limited by socio-political than by technological limitations - poor environmental image.
  • Useful paper for understanding shellfish - short though

Aquaculture: Issues and Opportunities for Sustainable Production and Trade

Asche, F., Khatun, F., 2006. Aquaculture: issues and opportunities for sustainable production and trade. International Centre for Trade and Sustainable Development (ICTSD).

Intro:

Aquaculture can be considered a recent success story in helping to feed the world’s population. Production has increased from about 3.5 million tonnes in 1970 to more than 50 million tonnes in 2003, with most of this growth taking place in the developing world, which now accounts for more than 80 percent of global aquaculture production. This tremendous growth has provided a number of opportunities for greater food security, improved livelihoods and reduced poverty. However, it has also created challenges with respect to environmental issues and sustainability.

  • Competitive nature of aquaculture assessed, profitability
  • Technological aspect of aquaculture is discussed (table Fig 2-4)
  • Environmental and socio-economic issues discussed
  • Useful article for understanding where aquaculture is on a political level and its direction. Good for reference

Growing Premium Seafood—Inland

Wood, M., 2009. Growing Premium Seafood-Inland! Agricultural Research 57, 14.

Intro:

People who know seafood know that cobia and Florida pompano are among the world’s best. Found in the warm waters off the Atlantic and Gulf coasts, these saltwater superstars are prized for both commercial and sport fishing. Pompano (pronounced POM-puh-no) and cobia (COEbee-uh) have firm, mostly white flesh that’s perfect for grilling, pan-frying, or baking. Some people find that pompano has a pleasing, slightly sweet note.

  • Article details requirements for fish to be grown in tanks(food, water, and space)
  • Water quality is imperative to good fish farming
  • Good article for proof of concept of growing fish in tanks away from large bodies of water

A Fish Farmer's Guide to Understanding Water Quality

Swann, L., 1997. A fish farmer's guide to understanding water quality. Aquaculture Extension, Illinois-Indiana Sea Grant Program.

  • Physical Characteristics of Water
  • Water Balance in Fish
  • Sources of Water
  • Water Quantity
  • Water’s Physical Factors
  • Water’s Chemical Factors
  • Helpful for understanding the livable conditions fish need in order to thrive in aquaculture

Modern approaches to marine antifouling coatings

Chambers, L.D., Stokes, K.R., Walsh, F.C., Wood, R.J.K., 2006. Modern approaches to marine antifouling coatings. Surface and Coatings Technology 201, 3642–3652. doi:10.1016/j.surfcoat.2006.08.129

Abstract:

Marine structures such as platforms, jetties and ship hulls are subject to diverse and severe biofouling. Methods for inhibiting both organic and inorganic growth on wetted substrates are varied but most antifouling systems take the form of protective coatings. Biofouling can negatively affect the hydrodynamics of a hull by increasing the required propulsive power and the fuel consumption. This paper reviews the development of antifouling coatings for the prevention of marine biological fouling. As a result of the 2001 International Maritime Organization (IMO) ban on tributyltin (TBT), replacement antifouling coatings have to be environmentally acceptable as well as maintain a long life. Tin-free self-polishing copolymer (SPC) and foul release technologies are current applications but many alternatives have been suggested. Modern approaches to environmentally effective antifouling systems and their performance are highlighted.

  • Detailed understanding of fouling process
  • Significant biofouling would increase weight.
  • Table 1 is a summary of major antifouling coatings in last 50 years
  • Biomimetics is a likely future direction to advanced antifouling surfaces --. broad spectrum activity and species specific antifouling performance
  • Very useful for consideration for construction of floating array. - Must follow table 6 guidelines

Marine renewable energy: potential benefits tobiodiversity? An urgent call for research

Inger, R., Attrill, M.J., Bearhop, S., Broderick, A.C., James Grecian, W., Hodgson, D.J., Mills, C., Sheehan, E., Votier, S.C., Witt, M.J., Godley, B.J., 2009. Marine renewable energy: potential benefits to biodiversity? An urgent call for research. Journal of Applied Ecology 46, 1145–1153. doi:10.1111/j.1365-2664.2009.01697.x

  • marine renewable energy installations (MREI) concerns are discussed
  • If done correctly MREI installations may increase local biodiversity and potentially benefit the wider marine environment. Can act as both artificial reefs and fish aggregation devices
  • Potential political hurtles are discussed
  • Win-Win - energy and rebuilding marine habitats
  • Solid paper, doesn't mention floatovoltaics, but very useful nonetheless.

Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment

Shields, M.A., Woolf, D.K., Grist, E.P.M., Kerr, S.A., Jackson, A.C., Harris, R.E., Bell, M.C., Beharie, R., Want, A., Osalusi, E., Gibb, S.W., Side, J., 2011. Marine renewable energy: The ecological implications of altering the hydrodynamics of the marine environment. Ocean & Coastal Management 54, 2–9. doi:10.1016/j.ocecoaman.2010.10.036

Abstract:

Many countries now recognise the need for mitigation of climate change induced by human activities and have incorporated renewable energy resources within their energy policy. There are extensive resources of renewable energy within the marine environment and increasing interest in extracting energy from locations with either large tidal range, rapid flow with and without wave interaction, or large wave resources. However, the ecological implications of altering the hydrodynamics of the marine environment are poorly understood. Ecological data for areas targeted for marine renewable developments are often limited, not least because of the considerable challenges to sampling in high energy environments. In order to predict the scale and nature of ecological implications there is a need for greater understanding of the distribution and extent of the renewable energy resource and in turn, of how marine renewable energy installations (MREIs) may alter energy in the environment. Regional ecological implications of a MREI need to be considered against the greater and global ecological threat of climate change. Finally, it is recommended that the identification of species and biotopes susceptible to the removal of hydrokinetic energy could be a suitable strategy for understanding how a MREI may alter flow conditions.

  • In-depth understanding of movement and dynamics on organisms in a variety of aqua environments.
  • There are "safe limits" of energy to remove from the environment without detrimental effects. - good for solar vs other forms of energy
  • Organisms rely on the energy and heat generated by waves for their physical and chemical responses to the environment
  • Any structure can remove energy from currents up to 10s of km
  • Ecological effects are discussed, and a focus should be on local over global for a given system
  • Good paper for Floatovoltaics over other forms of MREI.

Collision risks between marine renewable energy devices and mammals, fish and diving birds

Wilson, B., Batty, R.S., Daunt, F. and Carter, C., 2006. Collision risks between marine renewable energy devices and mammals, fish and diving birds: Report to the Scottish Executive.

Abstract:

This report summarises the risks of injurious collision that marine renewable devices may pose to marine mammals, fish and birds using Scottish waters within the SEA assessment area. A collision is considered to be a physical contact between a device or its pressure field and an organism, that may result in an injury (however slight) to that organism. We did not consider the physical impacts of sound. Vertebrates may avoid collisions by moving away from the immediate area around a device (avoidance) or by escaping at close range (evasion, analagous to swerving to prevent collision with an obsticle in the road).

  • Sound from operation of equipment is a needed consideration on marine animals
  • In-depth analysis on how marine animals interact with fixed submerged and/or moored devices + structures
  • Table 4 for fish aggregation devices(FADs) - most important section
  • Section 4 details submerged structure structure hazards
  • Section 6 details feature density - sound and light (underwater)
  • Good paper for understanding how humans can affect marine animals

Marine Renewable Energy Converters Biofouling: A Critical Review on Impacts and Prevention

Titah-Benbouzid, H. and Benbouzid, M., Marine Renewable Energy Converters Biofouling: A Critical Review on Impacts and Prevention.

Abstract:

In recent years, a number of studies have been performed to assess the damages caused by biofouling, which is simply the attachment of organisms to a surface in contact with water for a period of time. This explanation sounds fairly straightforward, but there are several organisms that cause biofouling, many different types of affected surfaces, and therefore many solutions dealing with this problem. Regarding the marine renewable energy emerging and promising area of research, this paper aims to provide a critical review of the biofouling issue in the context of Marine Renewable Energy Converters (MRECs). The proposed review will specifically highlight biofouling impacts on MRECs and solutions to prevent fouling. In addition, a discussion will highlight challenges that MRECs market needs to undertake to overcome the biofouling problem.

  • Micro vs macrofouling organisms discussed
  • Biofouling development modes discussed - absorption of macromolecules to surface after integration into water
  • least complex the better, smoother the better
  • Section V indicates way to prevent biofouling. Table 1. - Electrochemical foul prevention appears to be most effective/long lasting
  • Figure 13. - Key interactive parameters affecting an antifouling coating system

Terms

Fish aggregating device(FAD): A man-made object used to attract ocean going pelagic fish such as marlin, tuna and mahi-mahi (dolphin fish). Over 300 species of fish gather around FADs.

References

  1. Trapani, K., Redón Santafé, M., 2015. A review of floating photovoltaic installations: 2007-2013: A review of floating photovoltaic installations. Progress in Photovoltaics: Research and Applications 23, 524–532. doi:10.1002/pip.2466
  2. Sliz-Szkliniarz, B., 2013. Assessment of the renewable energy-mix and land use trade-off at a regional level: A case study for the Kujawsko–Pomorskie Voivodship Land Use Policy 35, 257–270. doi:10.1016/j.landusepol.2013.05.018
  3. Turney, D., Fthenakis, V., 2011. Environmental impacts from the installation and operation of large-scale solar power plants Renewable and Sustainable Energy Reviews 15, 3261–3270. doi:10.1016/j.rser.2011.04.023
  4. Trapani, K., Millar, D.L., Smith, H.C.M., 2013. Novel offshore application of photovoltaics in comparison to conventional marine renewable energy technologies Renewable Energy 50, 879–888. doi:10.1016/j.renene.2012.08.043
  5. Ferrer-Gisbert, C., Ferrán-Gozálvez, J.J., Redón-Santafé, M., Ferrer-Gisbert, P., Sánchez-Romero, F.J., Torregrosa-Soler, J.B., 2013. A new photovoltaic floating cover system for water reservoirs Renewable Energy 60, 63–70. doi:10.1016/j.renene.2013.04.007
  6. Tsoutsos, T., Frantzeskaki, N., Gekas, V., 2005. Environmental impacts from the solar energy technologies Energy Policy 33, 289–296. doi:10.1016/S0301-4215(03)00241-6
  7. Hernandez, R.R., Easter, S.B., Murphy-Mariscal, M.L., Maestre, F.T., Tavassoli, M., Allen, E.B., Barrows, C.W., Belnap, J., Ochoa-Hueso, R., Ravi, S., Allen, M.F., 2014. Environmental impacts of utility-scale solar energy. Renewable and Sustainable Energy Reviews 29, 766–779. doi:10.1016/j.rser.2013.08.041
  8. Solangi, K.H., Islam, M.R., Saidur, R., Rahim, N.A., Fayaz, H., 2011. A review on global solar energy policy. Renewable and Sustainable Energy Reviews 15, 2149–2163. doi:10.1016/j.rser.2011.01.007
  9. Mellit, A., Sağlam, S., Kalogirou, S.A., 2013. Artificial neural network-based model for estimating the produced power of a photovoltaic module. Renewable Energy 60, 71–78. doi:10.1016/j.renene.2013.04.011
  10. Santafé, M.R., Ferrer Gisbert, P.S., Sánchez Romero, F.J., Torregrosa Soler, J.B., Ferrán Gozálvez, J.J., Ferrer Gisbert, C.M., 2014. Implementation of a photovoltaic floating cover for irrigation reservoirs. Journal of Cleaner Production 66, 568–570. doi:10.1016/j.jclepro.2013.11.006
  11. Redón Santafé, M., Torregrosa Soler, J.B., Sánchez Romero, F.J., Ferrer Gisbert, P.S., Ferrán Gozálvez, J.J., Ferrer Gisbert, C.M., 2014. Theoretical and experimental analysis of a floating photovoltaic cover for water irrigation reservoirs Energy 67, 246–255. doi:10.1016/j.energy.2014.01.083
  12. Altman, J., Harner, A., Leung, H.F. and Tecce, S., 2010. The Feasibility of a Municipally Operated Electric Grid in Santa Fe, New Mexico.
  13. Trapani, K., Millar, D.L., 2015. Floating photovoltaic arrays to power the mining industry: A case study for the McFaulds lake (Ring of Fire) Environ. Prog. Sustainable Energy n/a–n/a. doi:10.1002/ep.12275
  14. Dempster Tim, T.M., 2004. Fish aggregation device (FAD) research: Gaps in current knowledge and future directions for ecological studies. Reviews in Fish Biology and Fisheries (0960-3166) (Kluwer), 2004-03 , Vol. 14 , N. 1 , P. 21-42 14. doi:10.1007/s11160-004-3151-x

Contributors

Adam Pringle

Cookies help us deliver our services. By using our services, you agree to our use of cookies.