Line 76: Line 76:
====[http://doi.wiley.com/10.1002/adfm.201301205 P. V. Sushko, K. M. Rosso, J.-G. Zhang, J. Liu, and M. L. Sushko, “Oxygen Vacancies and Ordering of d-levels Control Voltage Suppression in Oxide Cathodes: the Case of Spinel LiNi 0.5 Mn 1.5 O 4- δ ,” Advanced Functional Materials, vol. 23, no. 44, pp. 5530–5535, Nov. 2013. doi: 10.1002/adfm.201301205]====
====[http://doi.wiley.com/10.1002/adfm.201301205 P. V. Sushko, K. M. Rosso, J.-G. Zhang, J. Liu, and M. L. Sushko, “Oxygen Vacancies and Ordering of d-levels Control Voltage Suppression in Oxide Cathodes: the Case of Spinel LiNi 0.5 Mn 1.5 O 4- δ ,” Advanced Functional Materials, vol. 23, no. 44, pp. 5530–5535, Nov. 2013. doi: 10.1002/adfm.201301205]====


====[A. M. Ovrutsky, A. S. Prokhoda, and M. S. Rasshchupkyna, Computational Materials Science: Surfaces, Interfaces, Crystallization. Elsevier, 2013.]====
====[https://books.google.com/books?id=5ZTCAAAAQBAJ&pg=PA105&lpg=PA105&dq=manufacturing+of+Cathode+material+using+diffusion+phenomena&source=bl&ots=aSURl3DJas&sig=sw6P2G2MRg0GGZXDuxS0st7Yhck&hl=en&sa=X&ved=0ahUKEwi0h_qD07TMAhWJqR4KHa2iDDgQ6AEINTAC#v=onepage&q=manufacturing%20of%20Cathode%20material%20using%20diffusion%20phenomena&f=false A. M. Ovrutsky, A. S. Prokhoda, and M. S. Rasshchupkyna, Computational Materials Science: Surfaces, Interfaces, Crystallization. Elsevier, 2013.]====


====[http://dx.doi.org/10.1021/cm200753g T. Mueller, G. Hautier, A. Jain, and G. Ceder, “Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing,” Chem. Mater., vol. 23, no. 17, pp. 3854–3862, Sep. 2011. doi: 10.1021/cm200753g]====
====[http://dx.doi.org/10.1021/cm200753g T. Mueller, G. Hautier, A. Jain, and G. Ceder, “Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing,” Chem. Mater., vol. 23, no. 17, pp. 3854–3862, Sep. 2011. doi: 10.1021/cm200753g]====
Line 83: Line 83:


====[https://books.google.com/books?id=IJBq21jyzjkC&pg=PA239&lpg=PA239&dq=manufacturing+of+Cathode+material+using+diffusion+phenomena&source=bl&ots=glyi1RcjWZ&sig=z4fl3CD6kk7VjFWtMWUP9PHGIkc&hl=en&sa=X&ved=0ahUKEwi0h_qD07TMAhWJqR4KHa2iDDgQ6AEITjAG#v=onepage&q=manufacturing%20of%20Cathode%20material%20using%20diffusion%20phenomena&f=false K. E. Aifantis, S. A. Hackney, and R. V. Kumar, "High Energy Density Lithium Batteries: Materials, Engineering, Applications." John Wiley & Sons, 2010.]====
====[https://books.google.com/books?id=IJBq21jyzjkC&pg=PA239&lpg=PA239&dq=manufacturing+of+Cathode+material+using+diffusion+phenomena&source=bl&ots=glyi1RcjWZ&sig=z4fl3CD6kk7VjFWtMWUP9PHGIkc&hl=en&sa=X&ved=0ahUKEwi0h_qD07TMAhWJqR4KHa2iDDgQ6AEITjAG#v=onepage&q=manufacturing%20of%20Cathode%20material%20using%20diffusion%20phenomena&f=false K. E. Aifantis, S. A. Hackney, and R. V. Kumar, "High Energy Density Lithium Batteries: Materials, Engineering, Applications." John Wiley & Sons, 2010.]====
====[]====

Revision as of 10:54, 30 April 2016

Search List

Background

N. Nitta, F. Wu, J. T. Lee, and G. Yushin, “Li-ion battery materials: present and future,” Materials Today, vol. 18, no. 5, pp. 252–264, Jun. 2015. doi: 10.1016/j.mattod.2014.10.040

J. W. Fergus, “Recent developments in cathode materials for lithium ion batteries,” Journal of Power Sources, vol. 195, no. 4, pp. 939–954, Feb. 2010. doi: 10.1016/j.jpowsour.2009.08.089

M. M. Thackeray, C. S. Johnson, K. Amine, and J. Kim, “Lithium metal oxide electrodes for lithium cells and batteries,” US6677082 B2, 13-Jan-2004. Patent No: US6677082 B2

M. M. Thackeray, C. S. Johnson, K. Amine, and J. Kim, “Lithium metal oxide electrodes for lithium cells and batteries,” US6680143 B2, 20-Jan-2004. Patent No : US6680143 B2

Why study xLiMO2.(1-x)Li2M′O3 ?

A. M. Christian M. Julien, “Comparative Issues of Cathode Materials for Li-Ion Batteries,” Inorganics, vol. 2, no. 1, 2014. doi: 10.3390/inorganics2010132

Synthesis and Characterization of various Li-Ni-Mn-Co oxide cathode materials

J. Li, J. Camardese, R. Shunmugasundaram, S. Glazier, Z. Lu, and J. R. Dahn, “Synthesis and Characterization of the Lithium-Rich Core–Shell Cathodes with Low Irreversible Capacity and Mitigated Voltage Fade,” Chem. Mater., vol. 27, no. 9, pp. 3366–3377, May 2015. doi: 10.1021/acs.chemmater.5b00617

D. Wang, R. Yu, X. Wang, L. Ge, and X. Yang, “Dependence of structure and temperature for lithium-rich layered-spinel microspheres cathode material of lithium ion batteries,” Sci Rep, vol. 5, Feb. 2015. doi: 10.1038/srep08403

L. Liang, K. Du, W. Lu, Z. Peng, Y. Cao, and G. Hu, “Synthesis and characterization of concentration–gradient LiNi0.6Co0.2Mn0.2O2 cathode material for lithium ion batteries,” Journal of Alloys and Compounds, vol. 613, pp. 296–305, Nov. 2014. doi: 10.1016/j.jallcom.2014.05.027

Y. Matsuda, K. Suzuki, M. Hirayama, and R. Kanno, “High-pressure synthesis of lithium-rich layered rock-salt Li2(Mn3/8Co1/4Ni3/8)O3-x for lithium battery cathodes,” Solid State Ionics, vol. 262, pp. 88–91, Sep. 2014. doi: 10.1016/j.ssi.2013.10.052

J. Li, Y. Xu, X. Li, and Z. Zhang, “Li2MnO3 stabilized LiNi1/3Co1/3Mn1/3O2 cathode with improved performance for lithium ion batteries,” Applied Surface Science, vol. 285, Part B, pp. 235–240, Nov. 2013. 10.1016/j.apsusc.2013.08.042

F. Xiao, J. Zhang, W. Cao, and D. Liu, “Process for preparing a positive electrode material for lithium ion battery,” US20090146115 A1, 11-Jun-2009. Patent no : US20090146115 A1

Y. Zhang, H. Cao, J. Zhang, and B. Xia, “Synthesis of LiNi0.6Co0.2Mn0.2O2 cathode material by a carbonate co-precipitation method and its electrochemical characterization,” Solid State Ionics, vol. 177, no. 37–38, pp. 3303–3307, 2006. doi: 10.1016/j.ssi.2006.09.008

X. Li, F. Cheng, B. Guo, and J. Chen, “Template-Synthesized LiCoO2, LiMn2O4, and LiNi0.8Co0.2O2 Nanotubes as the Cathode Materials of Lithium Ion Batteries,” J. Phys. Chem. B, vol. 109, no. 29, pp. 14017–14024, Jul. 2005. 10.1021/jp051900a

H. Yasuda, “Lithium nickelate positive active material, producing method thereof and lithium battery equipped with the active material,” US6033807 A, 07-Mar-2000. Patent no : US6033807 A

W. Li, “Electrode material for rechargeable batteries and process for the preparation thereof,” CA2257985 A1, 24-Dec-1997. Patent No : CA2257985 A1

J. Yamaura, K. Okamura, and Y. Nitta, “Processes for making positive active material for lithium secondary batteries and secondary batteries therefor,” US5626635 A, 06-May-1997. Patent No: US5626635 A

M. Hasegawa, Y. Bito, S. Ito, H. Murai, and Y. Toyoguchi, “Method of making a positive electrode for lithium secondary battery,” US5490320 A, 13-Feb-1996. Patent No: US5490320 A

M. Hasegawa, H. Murai, S. Ito, Y. Bito, and Y. Toyoguchi, “Process for production of positive electrode active material for nonaqueous electrolyte lithium secondary cell,” US5370948 A, 06-Dec-1994. Patent No: US5370948 A

B. Riley, “Process for preparing mixed metal oxides,” US4567031 A, 28-Jan-1986. Patent No: US4567031 A

Thermodynamic and Kinetic studies

M. Dixit, M. Kosa, O. S. Lavi, B. Markovsky, D. Aurbach, and D. T. Major, “Thermodynamic and kinetic studies of LiNi0.5Co0.2Mn0.3O2 as a positive electrode material for Li-ion batteries using first principles,” Phys. Chem. Chem. Phys., vol. 18, no. 9, pp. 6799–6812, Feb. 2016 . doi: 10.1039/C5CP07128C

J. Li, R. Doig, J. Camardese, K. Plucknett, and J. R. Dahn, “Measurements of Interdiffusion Coefficients of Transition Metals in Layered Li–Ni–Mn–Co Oxide Core–Shell Materials during Sintering,” Chem. Mater., vol. 27, no. 22, pp. 7765–7773, Nov. 2015. doi: 10.1021/acs.chemmater.5b03499

J.-K. Noh, S. Kim, H. Kim, W. Choi, W. Chang, D. Byun, B.-W. Cho, and K. Y. Chung, “Mechanochemical Synthesis of Li2MnO3 Shell/LiMO2 (M = Ni, Co, Mn) Core-Structured Nanocomposites for Lithium-Ion Batteries,” Scientific Reports, vol. 4, May 2014. doi: 10.1038/srep04847

E. Lee and K. A. Persson, “Solid-Solution Li Intercalation as a Function of Cation Order/Disorder in the High-Voltage LixNi0.5Mn1.5O4 Spinel,” Chem. Mater., vol. 25, no. 14, pp. 2885–2889, Jul. 2013. doi: 10.1021/cm4014738

F. Xiao, J. Zhang, W. Cao, and D. Liu, “Process for preparing a positive electrode material for lithium ion battery,” US20090146115 A1, 11-Jun-2009. Patent no : US20090146115 A1

D. Zeng, J. Cabana, J. Bréger, W.-S. Yoon, and C. P. Grey, “Cation Ordering in Li[NixMnxCo(1–2x) O2-Layered Cathode Materials: A Nuclear Magnetic Resonance (NMR), Pair Distribution Function, X-ray Absorption Spectroscopy, and Electrochemical Study,” Chem. Mater., vol. 19, no. 25, pp. 6277–6289, Dec. 2007. doi: 10.1021/cm702241a

J. Yamaura, K. Okamura, and Y. Nitta, “Processes for making positive active material for lithium secondary batteries and secondary batteries therefor,” US5626635 A, 06-May-1997. Patent no : US5626635 A

“Consequences of Combinatorial Studies of Positive Electrodes for Li-ion Batteries - Springer.”

M. S. Islam and C. A. J. Fisher, “Lithium and sodium battery cathode materials: computational insights into voltage, diffusion and nanostructural properties,” Chem. Soc. Rev., vol. 43, no. 1, pp. 185–204, 2014 doi: 10.1039/C3CS60199D

A. Van der Ven and G. Ceder, “Lithium diffusion mechanisms in layered intercalation compounds,” Journal of Power Sources, vol. 97–98, pp. 529–531, Jul. 2001. doi: 10.1016/S0378-7753(01)00638-3

P. V. Sushko, K. M. Rosso, J.-G. Zhang, J. Liu, and M. L. Sushko, “Oxygen Vacancies and Ordering of d-levels Control Voltage Suppression in Oxide Cathodes: the Case of Spinel LiNi 0.5 Mn 1.5 O 4- δ ,” Advanced Functional Materials, vol. 23, no. 44, pp. 5530–5535, Nov. 2013. doi: 10.1002/adfm.201301205

A. M. Ovrutsky, A. S. Prokhoda, and M. S. Rasshchupkyna, Computational Materials Science: Surfaces, Interfaces, Crystallization. Elsevier, 2013.

T. Mueller, G. Hautier, A. Jain, and G. Ceder, “Evaluation of Tavorite-Structured Cathode Materials for Lithium-Ion Batteries Using High-Throughput Computing,” Chem. Mater., vol. 23, no. 17, pp. 3854–3862, Sep. 2011. doi: 10.1021/cm200753g

Y. Wei, J. Zheng, S. Cui, X. Song, Y. Su, W. Deng, Z. Wu, X. Wang, W. Wang, M. Rao, Y. Lin, C. Wang, K. Amine, and F. Pan, “Kinetics Tuning of Li-Ion Diffusion in Layered Li(NixMnyCoz)O2,” J. Am. Chem. Soc., vol. 137, no. 26, pp. 8364–8367, Jul. 2015. doi: 10.1021/jacs.5b04040

K. E. Aifantis, S. A. Hackney, and R. V. Kumar, "High Energy Density Lithium Batteries: Materials, Engineering, Applications." John Wiley & Sons, 2010.

Cookies help us deliver our services. By using our services, you agree to our use of cookies.