Appropedia needs your support - Please Donate Today

Resilience to global food supply catastrophes

From Appropedia
Jump to: navigation, search

Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source 3-D printing.
Contact Dr. Joshua Pearce or Apply here

MOST: Projects and Publications, Methods, Lit. reviews, People, Sponsors
Twitter updates @ProfPearce

OSL.jpg


Pearce Publications By Topic: Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education


Baum, S.D., Denkenberger, D.C., A Pearce, J.M., Robock, A., Winkler, R. Resilience to global food supply catastrophes. Environment, Systems and Decisions 35(2), pp 301-313 (2015). open access DOI: 10.1007/s10669-015-9549-2

Keywords[edit]

Global catastrophic risk, Food security, Resilience, Alternative foods, Nuclear winter, Volcanic winter

Abstract[edit]

Us-pop.png
Many global catastrophic risks threaten major disruption to global food supplies, including nuclear wars, volcanic eruptions, asteroid and comet impacts, and plant disease outbreaks. This paper discusses options for increasing the resilience of food supplies to these risks. In contrast to local catastrophes, global food supply catastrophes cannot be addressed via food aid from external locations. Three options for food supply resilience are identified: food stockpiles, agriculture, and foods produced from alternative (non-sunlight) energy sources including biomass and fossil fuels. Each of these three options has certain advantages and disadvantages. Stockpiles are versatile but expensive. Agriculture is efficient but less viable in certain catastrophe scenarios. Alternative foods are inexpensive pre-catastrophe but need to be scaled up post-catastrophe and may face issues of social acceptability. The optimal portfolio of food options will typically include some of each and will additionally vary by location as regions vary in population and access to food input resources. Furthermore, if the catastrophe shuts down transportation, then resilience requires local self-sufficiency in food. Food supply resilience requires not just the food itself, but also the accompanying systems of food production and distribution. Overall, increasing food supply resilience can play an important role in global catastrophic risk reduction. However, it is unwise to attempt maximizing food supply resilience, because doing so comes at the expense of other important objectives, including catastrophe prevention. Taking all these issues into account, the paper proposes a research agenda for analysis of specific food supply resilience decisions.

See Also[edit]

Davos IDRC Conference[edit]