Get our free book on rainwater now - To Catch the Rain.

Open-source 3-D Platform for Low-cost Scientific Instrument Ecosystem

From Appropedia
Jump to: navigation, search

Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source 3-D printing.
Contact Dr. Joshua Pearce or Apply here

MOST: Projects and Publications, Methods, Lit. reviews, People, Sponsors
Twitter updates @ProfPearce


Pearce Publications By Topic: Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education

This OSAT has been designed but not yet tested - use at own risk.
This OSAT has been modeled.
This OSAT has been prototyped.
This OSAT has been verified by: MOST.

You can help Appropedia by contributing to the next step in this OSAT's status.




The combination of open-source software and hardware provide technically feasible methods to create low-cost, highly-customized scientific research equipment. Open-source 3-D printers have proven useful for fabricating scientific tools. Here the capabilities of an open-source 3-D printer are expanded to become a highly-flexible scientific platform. An automated low-cost 3-D motion control platform is presented having the capacity to perform scientific applications including: i) 3-D printing of scientific hardware, ii) laboratory auto-stirring, measuring and probing, iii) automated fluid handling and iv) shaking and mixing. The open-source 3-D platform not only facilities routine research while radically reducing the cost, but it also inspires the creation of a diverse array of custom instruments that can be shared and replicated digitally throughout the world to drive down the cost of research and education further.


3-D printing, 3-D platform, fluid handling, open source hardware, laboratory equipment