Appropedia needs your support - Please Donate Today

Non-assembly of a 3D-printed Auger extruder for UV-sensitive materials

From Appropedia
Jump to: navigation, search

Literature review...

in progress...

Introduction[edit]

- Additive Manufacturing

- Extrusion

- Extrusion of UV-sensitive materials

- Auger-extruder

- Open-source hardware

- Part consolidation

- Integrated functions (non-assemblies)


Sources[edit]

Books_________________________________________________________________________________

[1] I. Gibson, D. Rosen, and B. Stucker, Additive Manufacturing Technologies. 2008.


Journal Articles_________________________________________________________________________


Additive Manufacturing


[2] S. Mellor, L. Hao, and D. Zhang, “Additive manufacturing: A framework for implementation,” vol. 149, pp. 194–201, 2014.

[3] B. P. Conner et al., “Making sense of 3-D printing: Creating a map of additive manufacturing products and services,” Addit. Manuf., vol. 1, pp. 64–76, 2014.

[4] C. Achillas, D. Aidonis, E. Iakovou, M. Thymianidis, and D. Tzetzis, “A methodological framework for the inclusion of modern additive manufacturing into the production portfolio of a focused factory,” J. Manuf. Syst., vol. 37, pp. 328–339, 2015.

[5] R. Bogue, “3D printing: the dawn of a new era in manufacturing?,” Assem. Autom., vol. 33, no. 4, pp. 307–311, 2013.

[6] I. Campbell, D. Bourell, and I. Gibson, “Additive manufacturing: rapid prototyping comes of age,” Rapid Prototyp. J., vol. 18, no. 4, pp. 255–258, 2012.


Extrusion of UV-sensitive materials


[7] J. Holländer, R. Hakala, J. Suominen, N. Moritz, J. Yliruusi, and N. Sandler, “3D printed UV light cured polydimethylsiloxane devices for drug delivery,” Int. J. Pharm., 2017.

[8] “Potterbot 7 UV Paste 3D printer.” [Online]. Available: http://www.deltabots.com/products/v-25-uv-uv-paste-printer. [Accessed: 13-Nov-2017].

[9] C. Paper, “A New 3D Printing Technique Using Extrusion of Photopolymer,” no. January, 2017.

[10] M. Faes, H. Valkenaers, F. Vogeler, J. Vleugels, and E. Ferraris, “Extrusion-based 3D printing of ceramic components,” Procedia CIRP, vol. 28, pp. 76–81, 2015.


Auger-extruder


[11] J. Sun, W. Zhou, L. Yan, D. Huang, and L. ya Lin, “Extrusion-based food printing for digitalized food design and nutrition control,” J. Food Eng., vol. 220, pp. 1–11, 2016.


Open-source hardware


[12] R. Bogue, “What future for humans in assembly?,” Assem. Autom., vol. 34, no. 4, pp. 305–309, 2014.

[13] B. T. Wittbrodt et al., “Life-cycle economic analysis of distributed manufacturing with open-source 3-D printers,” Mechatronics, vol. 23, no. 6, pp. 713–726, 2013.

[14] G. C. Anzalone, C. Zhang, B. Wijnen, P. G. Sanders, and J. M. Pearce, “A Low-Cost Open-Source Metal 3-D Printer,” Ieee Access, vol. 1, pp. 803–810, 2013.

[15] B. M. Tymrak, M. Kreiger, and J. M. Pearce, “Mechanical properties of components fabricated with open-source 3-D printers under realistic environmental conditions,” Mater. Des., vol. 58, pp. 242–246, 2014.


Part consolidation (Design for AM)


[16] S. Hällgren, L. Pejryd, and J. Ekengren, “(Re)Design for Additive Manufacturing,” Procedia CIRP, vol. 50, pp. 246–251, 2016.

[17] K. Salonitis, “Design for additive manufacturing based on the axiomatic design method,” Int. J. Adv. Manuf. Technol., vol. 87, no. 1–4, pp. 989–996, 2016.


Integrated functions


[18] J. Glasschroeder, E. Prager, and M. F. Zaeh, “Powder-bed-based 3D-printing of function integrated parts,” Rapid Prototyp. J., vol. 21, no. 2, pp. 207–215, 2015.

[19] X. Wei, Y. Tian, and A. Joneja, “A study on revolute joints in 3D-printed non-assembly mechanisms,” Rapid Prototyp. J., vol. 22, no. 6, pp. 901–933, 2016.

[20] X. Su, Y. Yang, D. Wang, and Y. Chen, “Digital assembly and direct fabrication of mechanism based on selective laser melting,” Rapid Prototyp. J., vol. 19, no. 3, pp. 166–172, 2013.


Searches[edit]

Google Scholar, Science Direct:

“principle of auger extruder”, “extrusion photopolymer”, “open-source hardware 3D printing”, “3D printing uv curing”, “integrated functions”, “Design for additive manufacturing”, “single screw extruder”, “non-assembly”



Aalto.png This page was part of an Aalto University course 3D Printing of Open Source Hardware for Science

Please leave comments using the discussion tab. The course runs in the Fall semester 2017. It is not open edit.


Contribute to this Literature Review Although this page is hosted by MOST it is open edit. Please feel free to add sources and summaries. If you are new to Appropedia, you can start contributing after you create an account or log in if you have an existing account.