Appropedia needs your support - Please Donate Today

Fabricating Ordered 2-D Nano-Structured Arrays Using Nanosphere Lithography

From Appropedia
Jump to: navigation, search

Sunhusky.png By Michigan Tech's Open Sustainability Technology Lab.

Wanted: Students to make a distributed future with solar-powered open-source 3-D printing.
Contact Dr. Joshua Pearce or Apply here

MOST: Projects and Publications, Methods, Lit. reviews, People, Sponsors
Twitter updates @ProfPearce

OSL.jpg


Pearce Publications By Topic: Energy Conservation Energy Policy Industrial SymbiosisLife Cycle Analysis Materials Science Open Source Photovoltaic Systems Solar CellsSustainable Development Sustainability Education


Nanolith.jpg

Source[edit]

Abstract[edit]

Status
This OSAT has been designed but not yet tested - use at own risk.
This OSAT has been modeled.
This OSAT has been prototyped.
This OSAT has been verified by: MOST.

You can help Appropedia by contributing to the next step in this OSAT's status.

Recent advances in the use of plasmonic metamaterials to improve absorption of light in thin-film solar photovoltaic devices has created a demand for a scalable method of patterning large areas with metal nanostructures deposited in an ordered array. This article describes two methods of fabricating ordered 2D nanosphere colloidal films: spin coating and interface coating. The two methods are compared and parameter optimization discussed. The study reveals that:

  • For smaller nanosphere sizes, spin coating is more favorable, while for larger nanospheres, the angled interface coating provides more coverage and uniformity.
  • A surfactant-free approach for interface coating is developed to fabricate zero-contamination colloidal films.
  • Each of the methods reaches an overall coverage of more than 90% and can be used for nanosphere lithography to form plasmonic metamaterials.

Keywords[edit]

 microsphere lithography; plasmonic; nanosphere lithography; dip coating; spin coating; nanosphere; plasmonic; metamaterial; photovoltaic; synthesis

Methods[edit]

Detailed methods in the paper - also supported by:

See Also[edit]